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This paper deals with the introduction of a nonlinear term into Darcy’s equation to 
describe inertial effects in a porous medium. The method chosen is the numerical 
resolution of flow equations at a pore scale. The medium is modelled by cylinders of 
either equal or unequal diameters arranged in a regular pattern with a square or 
triangular base. For a given flow through this medium the pressure drop is evaluated 
numerically. 

The Navier-Stokes equations are discretized by the mixed finite-element method. 
The numerical solution is based on operator-splitting methods whose purpose is to 
separate the difficulties due to the nonlinear operator in the equation of motion and 
the necessity of taking into account the continuity equation. The associated Stokes 
problems are solved by a mixed formulation proposed by Glowinski & Pironneau. 

For Reynolds numbers lower than 1,  the relationship between the global pressure 
gradient and the filtration velocity is linear as predicted by Darcy’s law. For higher 
values of the Reynolds number the pressure drop is influenced by inertial effects 
which can be interpreted by the addition of a quadratic term in Darcy‘s law. 

On the one hand this study confirms the presence of a nonlinear term in the motion 
equation as experimentally predicted by several authors, and on the other hand 
analyses the fluid behaviour in simple media. In  addition to the detailed numerical 
solutions, an estimation of the hydrodynamical constants in the Forchheimer 
equation is given in terms of porosity and the geometrical characteristics of the 
models studied. 

1. Introduction 
For a single-phase flow, a pressure gradient imposed upon a porous medium 

induces a given filtration velocity. Darcy (1856) observed that when this velocity is 
relatively small, it  is proportional to the pressure gradient. When the filtration 
velocity is larger, leading to Reynolds numbers greater than one, the measured 
pressure drop exceeds the value predicted by Darcy’s law. The existence of this 
phenomenon, as shown by several authors (Dupuit 1863 ; Forchheimer 1901 ; Irmay 
1958 ; Chauveteau 1965 ; Beavers & Sparrow 1969 ; Beavers, Sparrow & Rodenz 1973 ; 
de Vries 1979), requires the introduction of a corrective quadratic term in Darcy’s 
equation. 

The importance of this phenomenon in applications of both forced flow and natural 
convection currents is the motivation for this study. For the case of natural 
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FIGURE 1 .  Definition of the different base cells. 

convection the quadratic terms influence both the flow stability and the convective 
structure (Catton 1984; Nield & Joseph 1985). 

The introduction of an inertial term of the type (( V . 0 )  V) in Darcy’s equation is 
not entirely satisfactory ; indeed, if one considers a unidirectional flow, this term is 
reduced to zero independently of the Reynolds number. This type of formulation, 
based only on the filtration velocity is unsatisfactory because i t  does not take into 
account inertial effects at the pore scale; see, for example, Whitaker (1969). 

The usual formulation used to model these phenomena is Forchheimer’s law, which 
includes a nonlinear term of the form CpK-i I ll- V in Darcy’s equation. The constant 
C associated with the nonlinear term depends only on the geometry of the porous 
medium. Knowledge of C is necessary in order to determine the velocity field when 
inertial effects are important. 

In  order to pursue this approach, pressure and velocity fields are calculated for a 
porous medium modelled in terms of cylinders arranged in a regular pattern as 
illustrated in figures 1 and 2. The determination of velocities and pressure a t  each 
point of the domain, as well as the global pressure drop. will not only help the 
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FIGURE 2. h’etwork configuration. 

understanding of the physical mechanisms involved but will also enable the 
calculation of the global characteristics as a function of the Reynolds number. 

With high performance of computers and algorithms, numerical flow simulations 
can accommodate complex geometric structures. Thus it is possible to analyse the 
motion at  the pore scale to obtain some information on the relative magnitude of 
recirculation in the pore and on the repartitioning of the pressure a t  the substrate 
surface. The few simplistic cases that have been solved can aid the understanding of 
the real media. 

2. Formulation of the problem 
Consider a porous medium of length L in the x-direction and of infinite length in 

the y- and z-directions, modelled by a periodic network of cylinders with axes parallel 
to the y-direction. For this situation the local velocity can be represented as 

v = ue,+we,, 

where e, and e, are respectively the unit base vectors in the x- and z-directions. The 
porous medium is composed of a series of cells translated from a basic cell. The 
calculation domain Q includes the model porous medium bounded upstream and 
downstream by fluid volumes as illustrated in figure 2. 

The fluid circulating through this system is assumed to be incompressible with a 
density p and a constant viscosity p. The velocity v and the pressure p are governed 
by Navier-Stokes and continuity equations which we express as 

p (t - + ( u - V )  u 1 = - V p + p V 2 u  in 52, (2.1) 

v*v = 0 in Q. (2 .2 )  

The boundary conditions of the problem are 

(2.3) I u = w  

- _  - w  

= 0 

= 0 

w = 0 

on r,, a t  the surface of the cylinder, 

on r,, at  the lines of symmetry, 

on r,, at  the entry and a t  the exit. 

au 
az 
u = V,, 

By solving this set of equations we obtain not only the pressure and velocity fields 
but also, by numerical integration, the global values of the pressure drop. In  this way 



396 0. Coulaud, P. Morel and J .  P .  Caltagirone 

we are able to obtain an equation which incorporates a quadratic term into Darcy’s 
equation according to 

VP+pK-l V+CpK-:IFI-V= 0,  (2.4) 

where K represents the component e,. K -  e, where K is the Darcy’s law permeability 
tensor. 

For computational purposes the equations and the boundary conditions need to be 
represented in non-dimensional form. The space coordinates are normalized by the 
average diameter d of the cylinders, the velocity by the average entry velocity V,, the 
pressure by pV: and the time by d/Vo. For the convenience of the reader we have used 
the same symbols for the dimensionless pressure and velocity as we have used for the 
dimensional quantities given earlier in (2.1), (2 .2)  and (2.4). The dimensionless 
system is given by 

v - v  = 0, (2 .5 )  

aU 1 
at Re 
- + ( u . V ) v  = -vp+-v2v,  (2.6) 

where Re = V,dp/,u is a Reynolds pore number. 

(2.7) I u = 0  
u = e, 

- (v .e , )  = v-e,  = 0 

at the surface of the cylinders, 
a t  the entry and a t  the exit, 

along the lines of symmetry. 
a 
az  

The dimensionless form of the local volume-average equations is given by 

The term K / d 2  can be considered as a combination of a Darcy number, K / h 2  for 
example, and a form ratio of hld.  

The system of equations (2 .5)-(2.7)  yields the pressure field for the model medium 
and defines, by exact numerical integration over plane sections (z = constant), the 
average pressure. The entry velocity V, being given, starting from the overall 
pressure drop through the model, an identification procedure allows the estimation 
of the Forchheimer coefficient for the three geometric situations that have been 
chosen for study. 

3. Numerical algorithm 
The algorithm that is discussed hereafter is an adaptation to the type of boundary 

conditions considered in this problem (symmetry conditions) of the method proposed 
by Glowinski & Pironneau (1978, 1979); Glowinski (1984); Bristcau et ul. (1979). 

3.1, Time discretization by operator-splitting methods 
Two difficulties are encountered in solving the system (2.1)-(2.3) : (i) the nonlinear 
term ( v -  V )  u in the equation of motion; (ii) the incompressibility condition V .  v = 0. 
These two problems are uncoupled by use of operator-splitting methods for the time 
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discretization. Consider the a 6 n e  functional space W, of sufficiently regular functions 
v, such that v = g on r = f ,  U r,, v a n  = 0 on r, and the compatibility condition 

J r , g - n d r  = 0. 

Two operators A, and A, are defined by 

2 
3Re 

A, v = ---VV, 

1 
31zc: 

A,(v) = ( v * V )  v----VZ V ;  

where A, is a linear operator and A, is a nonlinear one. T,et At (>  O) ,  be the time 
discretization step. We define the following scheme by: 

let v" be given and for all n > 0, vn+l is calculated by (3 .3)  

step 1 

step 2 

step 3 

(3.5)  

where 3' = v(x , jAt) ;  p' = p ( x , j A t ) ;  t. is the unit tangent vector a t  f , .  
Steps 1 and 3 yield respectively vn+a, pn+i and vn+l, pn+' by solving for each time 

an unsteady Stokes problem with mixed-type boundary conditions. Step 2 gives vn+f 
by solving a nonlinear problem. The scheme (3.3)-(3.6) is second-order accurate 
(Bristcau ~t a2. 1979). 

3.2. Solving the nonlinear problem 

The method of least squares (Bristeau et al. 1979; Glowinski 18x4) is used to solve 
(3.5); thus instead of seeking v as the solution of this equation, it is sought as the 
solution to a minimization problem. This solution is approached by a conjugated 
gradicnt algorithm. 
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For given v € V q  the function y(v) is defined as the unique solution of 

We note that v is the solution of (3.5) if and only if y is identical to zero. The 
functional J ( v )  is then defined by the following expression : 

and the minimization problem as : Find v E Vg such that 

J ( u )  > J ( w ) t l w ~ V ~ .  (3.9) 

The Polak-Ribiitre (Polak 1971) version of the conjugate gradient method is used to 
solve (3.9). The only important step in this algorithm is the calculation of the 
differential of J .  

3.3. Solving the Stokes problems 

For each step of the scheme given by (3.3)-(3.6) two Stokes problems corresponding 
to steps 1 and 3 have to be solved. These are of the following type: 

v + V p =  f in 9, 

V . v = O ,  in 9, 1 (3.10) 

This linear problem is solved by applying the decomposition method of the Stokes 
operator as proposed by Glowinski & Pironneau (1978, 1979) as a cascade of 
Poisson's equations. We use the following computational routine : 

Find p ,  such that 
- v 2 p o  = -V.f in 9, 

on r. Po = 0 

Find q5, such that 

Solve 

Find p such that 

a 
U , E V q ,  - (u , *z )  = 0 

an I on r,. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

p = h on r. \ -Vzj i= 0 in 9, (3.15) 
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Find u such that 
V p  in SZ, 

a 
-((u*z) = 0 
an 1 on r,. 

I (3.16) 

Then the solution of (3.10) is given by 

p = p+po,  v = u+u,. 

In  (3.14), A is a boundary operator which gives the pressure on the boundary that 
is required in order to have V - v  = 0. The discrete version of A is presented in the 

gendix. The notation is introduced in 53.4 below. For more details see Glowinski 
Pironneau (1978, 1979) ; Glowinski (1984) ; Thomasset (1980). 

3.4. Discretization in space 

The domain is discretized by a regular triangularization T,. The approximation is 
carried out by the mixed finite-elements method of the Lagrange type. Our objective 
is the solution of the Navier-Stokes equations to obtain the pressure and velocity 
fields from which we can calculate the area-averaged values. An approximation space 
Pl is chosen for the pressure while an approximation space Pz is used for the 
components of the velocity field. The average pressure on the segment, (x, y) € R 2 ,  
with x = constant and a(%)  < y < b(x) is defined by 

(3.17) 

where p ,  is the finite-element approximation of the pressure. 
By interpolation, the pressure takes the form of a piece-wise polynomial of the first 

degree. In (3.17) we use a quadrature formula (3.18) which is exact for polynomial 
of the first degree: rb 

(3.18) 

Solving the Navier-Stokes equations by this method is carried out using the 
Modulef finite-elements code (Conca & Steer 1983 ; Modulef 1984). We have carried out 
calculations on different grids in order to indicate under what circumstances the 
results are grid-independent. We show in figure 2 the triangularization used in these 
calculations, and for that case we have 2587 unknowns for one component of the 
velocity and 712 for the pressure. We assumed that the steady solution is obtained 
when the relative maximum of the increment of the pressure between step 1 and 
step 3 is less than lop4 At. To obtain this convergence we need (with At = lo-,) 18 
iterations for Re = 1 and 365 for Re = 20. Each time step requires about 3.5 s on an 
IBM 3081. 

4. Presentation and interpretation of the results 
4.1. Geometrical patterns 

Three different geometries A, B, C, illustrated in figure 1 ,  are used as model porous 
media. The first two are regular networks of cylinders in either a triangular or a 
square array. The third has a different shape, i.e. diameter; so in the result we can 
hope to see some influence of the lattice design and the shape. 
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FIGURE 3. ( a )  Isobar lines for h% = 1;  ( b )  streamlines for Re = 1; (c) isobar lines for Re = 20; 
( d )  streamlines for Re = 20. 

We are not only interested in the behaviour of the pressure and the streamlines in 
the porous medium, but also the influence of the position of the fluid-solid interface 
on the pressure drop. Thus the computational domain must cont,ain a long line of 
cylinders and ' calming ' zones before and after the pattern illustrated in figure 2. The 
latter allows the velocities a t  the entry and exit of the domain to be set equal to each 
other. 

4.2. Pressure jields and streamlines 

The local pressure fields and streamlines are obtained in detail for a B-type pattern, 
with the dimensionless cylinder diameter equal to 1, i.e. a porosity E = 0.61. The 
solution to the Navier-Stokes equations for Reynolds numbers higher than 10 are 
obtained by an incremental process. Two streamline and isobar-line networks are 
presented in figure 3 ( a d )  for Reynolds numbers of 1 and 20. 

We first examined the location of the point where pressure is a minimum. It 
situated a t  the back of the cylinder for Re = 1, but when Re increases to 20 i t  is 
shifted to a point situated a t  an angle of 100" (direct orientation). This change is due 
to the recirculation of the fluid downstream of the pattern just behind the last 
cylinder, as illustrated in figure 3 (d ) .  The point of maximum pressure, however, 
rcwains located in the same place, situated on the first cylinder. The arrangement of 
the isobars in the intcrior of the flow pattern is quite different for the two Reynolds 
numbers. In  the case Re = 1, the isobars are distributed in a symmetrical fashion 
between two adjacent cylinders. In  addition, the network is perfectly symmetrical 
with respect to the straight line x = iL, where L is the length of the model porous 
medium and is 16 for A, 11 for B and 17 for C. In  the case Re = 20 the network, as 
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FIGURE 4. Evolution of average pressure for ( a )  Re = 1; ( b )  20 

a whole, is not symmetric. Some isobar lines remain situated close to the straight line 
joining the centres of two adjacent cylinders, but with a distribution that is no longer 
symmetric. Isobar lines situated on the left will shift towards the front of the other 
cylinder as will those on the right. It can be noted that when the Reynolds number 
increases, the first isobar located behind the maximum point moves to the front of 
the cylinder to a limit position corresponding to an angle of ~ I L .  

The evolution of the average pressure shown in figure 4 is calculated by integrating 
the pressure at  x = constant. In the two cases considered here, it can be noted that 
the average pressure remains consta,nt in the region 0 < x < 1.5. At the exit, 
however, only for the case where the Reynolds number equals one is the global 
pressure constant. When Re = 20, an increase in the average pressure can be seen, 
owing to the recovery of kinetic energy associated with the appearance of a vortex 
behind the last cylinder. The latter has a value of -980 for a Reynolds number of 
1 and -58 for Re = 20. Also to be noted is the constant value of the average slope 
of the pressure gradient in the network. Thus the result is the classical one for the 
variation of average pressure of a uniform flow in a porous medium : that the pressure 
is uniform in the upstream zone and in the downstream zone, the profile being linear 
inside the medium. 

4.3. Nonlinear eflects 

The evolution of the average pressure variation - Ap,  as a function of the Reynolds 
number Re, is given in the case of a type-A pattern for the porosity of 0.43. This is 
different from the example presented in a previous publication (Coulaud, Morel & 
Caltagirone 1986). In  order to facilitate the determination of the numerical 
constants, the evolution of ( - A p R e d / L )  is plotted as a function of Re. For a more 
convenient presentation of the results, the curve is normalized by the value, a,  of 
( - A p R e d / L )  at  Re = 0 which is virtually constant. In  this case a = 188.8. By 
normalizing with respect to a,  figure 5 is obtained. This plot can be decomposed into 
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FIGCRE 5.  Influence of the Reynolds number, type A, e = 0.43. 

three zones : the first, for Re d 1 : the second. for 1 < Be < Re, with RP,  lying bctwcen 
13 and 14; and the third, for Re, < Re < 25. 

In  the first zone (Re d 1)  there exists a linear relationship between the average 
pressure gradient and the filtration velocity. This relationship is given by 

in which p is the area-averaged pressure. By comparing this to Darcy’s law, the 
permeability of the equivalent porous medium being studied is obtained and the 
permeability is given by K = d2 /a .  

The second zone is a transition zone. The effects arising from the inertial terms of 
the Xavier-Stokes equations are no longer negligible. 

In  the third zone (Re 2 13-14) an affine relationship is observed: 

-ApdRe 
aL 

= aRe+b,  

where a = 0.005 and b = 0.97. 

Coming back to real magnitudes, the following relationship is obtained : 

ba 
- P V i  + p P 0 .  (4.3) 

This shows that the average pressure gradient is a quadratic function of the filtration 
velocity, analogous to Forchheimer’s law (2.4), where C = a(a/b)i. 

4.4. InfEuence of porosity 
The influence of porosity on - Ap Re as a function of the Reynolds number is studied 
for type A and B patterns. The curves are normalized with respect to the coefficient 
a in order to  make the comparison possible. Interpretations of the normalized curves 
are made for three porosities: c = 0.43, 0.61 and 0.80. The results are shown in 
figure 6 ( a , b ) .  
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FIGURE 6. (a)  Influence of porosity: (a)  type A ;  ( b )  type B. 

It can be seen that in both of these cases the function ( -  Apd RelaL) decreases 
with decreasing porosity. Tables 1-5 show the variation of some coefficients and 
parameters with porosity. Table 1 indicates that the coefficient a, that  is the slopes 
for Re, < Re < 25, follows the same variations as the porosity. With the aid of 
table 3 we see that the constant C in Forchheimer’s law seems to be of the form 

constant 
C =  for a porosity value less than 0.61 

€ 

Thus it would appear that there exists a constant C, which is independent of c ,  but 
depends on the lattice design. It follows that, in dimensional form, the law (4.3) can 
be written as 

-- ~ p - L v o + 7 c o v ~ ;  - P k =-  d 
ax k ,  ek; a ba 

when the Reynolds number is between R, and 25. 
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6 A B  C 

0.43 0.005 0.0087 0.004 
0.61 0.008 0.014 
0.80 0.010 0.029 

TABLE 1. Coefficient a of the straight line a Re+b 

E A B C  

0.43 0.97 0.95 0.98 
0.61 0.94 0.91 
0.80 0.94 0.88 

TABLE 2. Coefficient b of the straight line a Re + b 

6 A B C  

0.43 0.042 0.086 0.031 
0.61 0.041 0.085 
0.80 0.027 0.098 

TABLE 3. Coefficient C, = CE 

6 A B C  

0.43 377.52 505.58 326.11 
0.61 67.36 89.09 
0.80 10.61 15.85 

TABLE 4. Parameter a-values 

E A B  C 

0.43 0.84 1.2 1.14 
0.61 0.70 1.0 
0.80 0.43 0.70 

TABLE 5. Average diameter 

4.5. Inpuence of geometry 

At this point we examine the behaviour of the curves ( - Ap Re d/aL) as a function 
of the Reynolds number, and also of the coefficients in (4.3) for the Reynolds 
numbers between R, and 25, according to the three geometries A, B and C. 

Figure 7 shows the influence of the pattern structure on the behaviour of ( - Ap Re 
d/aL)  as a function of Re. The curves resulting from tJhe structures A and C, that is 
for different radii, are very nearly identical, the maximum difference between the two 
being 0.012 for Re = 25. Once more, the difference between the configurations of A, 
C and that o f B  attain a value of 0.08 for Re = 25. For 1 6 Re 6 25 the difference is 
minimal. 

We need to investigate further the coefficient C,, which was first presented in $4.4 
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I 

Re 
FIGURE 7 .  Influence of geometry : 6 = 0.43. 

and also appears in Forchheimer’s law. If the product Cod is considered, where d is 
the average diameter of the cylinders in the basic cell, the following result is 
obtained : A = 0.0356; B = 0.103; C = 0.0358. 

In  cases A and C, that is when the two curves illustrated in figure 7 are close, a 
constant C, would seem to exist where C, = C J d .  Thus the coefficient C appearing 
in Forchheimer’s law could be written as C = CJ(cd) .  

The constant C, cannot be said to be universal: for such a claim other types of 
configurations would have to be examined. 

5. Conclusions 
This study of a uniform flow does not furnish definite conclusions about the 

complementary terms to be integrated in the equation describing the fluid motion 
through a real porous medium and incorporating the associated inertial elements. 

Nonetheless, this purely descriptive microscopic approach constitutes an in- 
teresting complement for actual experiments or for other theories such as 
homogenization. This work corroborates certain experiments by confirming that 
Darcy ’s and Forchheimer’s laws are only valid in well-established ranges of Reynolds 
numbcrs (Bear 1972). 

The numerical solution of the Navier-Stokes equations in the three model patterns 
allowed some direct results : 

( i )  the validation of the presence of quadratic terms in an equation expressing 
filtration velocity for Reynolds numbers that exceed a critical value Re, close to 13 
and less than 2 5 ;  

(ii) the specification of the form and value of the parameters and constants 
associated with this term ; 

(i i i)  the determination of the different rates of the nonlinear Darcy transition 
flow. 

It appears that the resulting nonlinear form of Darcy’s law is very similar to 
Forchheimer’s law when the porosity is small and the pattern rather complex. 

This study also shows that it is not possible to define a valid universal constant 
independent of the geometry of the medium. 
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Appendix 

The following spaces are introduced : 

A.1. Construction of the operator A 

Vh = {YhIqhECO(% Y h l K E P , ,  VKETh)> 

U*,h = {u,lu,ECO(Q) XC0(Q), U k , K E P 2 X P 2 ,  

vO,h = { p h  1 q h E  vh, q h l r =  0,  = rl r2 '3). 

uh = 0 o n r ,  u r,, uh-n  = 0 onr,}. 

Let (yi) i=l ,N be a basis of V,: qi is the basis function relative to vertex i .  
The symmetric positive definite operator A is constructed column by column. 
For each vertex i E r the following problems are solved. Find p i  E yi + Vo,h such 

that I, vp;.vq5 dx = 0, q 5 €  

.s, uk. vhdx+pj-Qvu~.vv, dx = - JI, vp;. Cdx, h E U O , h ;  

IQ Vq5; - Vq5n dx = div ui q5h dx, q5h E Vo, I, 

(A 1 )  

find uk E Uo,h  such that 

(A 2) 

find q5; E Vo,h such that 

(A 3) 

For all j ~ r  the coefficient of the operator is obtained by 

Ah( i , j )  = (Vq5;. Vqi - div uk q i )  dx s, 
The matrix ( A h ( i r j ) ) i , j  is calculated. 

A.2. Construction of the second member 

It is known that 

for i ~ r ,  we define the vector of component Bi by 

Bi = s, ( W O ,  h VYt - div U 0 , h  cri) dx. 

The problem (3.14) is equivalent to the following discrete problem. Find hi E R such 
that 

c ~ ~ ( i , j )  hi = B~ vi E r .  
i c r  
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